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Abstract

Multi-armed Bandit motivates methods with provable up-
per bounds on regret and also the counterpart lower bounds
have been extensively studied in this context. Recently, Multi-
agent Multi-armed Bandit has gained significant traction in
various domains, where individual clients face bandit prob-
lems in a distributed manner and the objective is the over-
all system performance, typically measured by regret. While
efficient algorithms with regret upper bounds have emerged,
limited attention has been given to the corresponding regret
lower bounds, except for a recent lower bound for adversar-
ial settings, which, however, has a gap with let known upper
bounds. To this end, we herein provide the first comprehen-
sive study on regret lower bounds across different settings and
establish their tightness. Specifically, when the graphs exhibit
good connectivity properties and the rewards are stochasti-
cally distributed, we demonstrate a lower bound of order

O(log T ) for instance-dependent bounds and
√

T for mean-
gap independent bounds which are tight. Assuming adversar-

ial rewards, we establish a lower bound O(T
2

3 ) for connected
graphs, thereby bridging the gap between the lower and upper
bound in the prior work. We also show a linear regret lower
bound when the graph is disconnected. While previous works
have explored these settings with upper bounds, we provide a
thorough study on tight lower bounds.

Introduction

Multi-armed Bandit (MAB) is a well-known online sequen-
tial decision making paradigm where a player selects arms,
receives corresponding rewards at each time step, and aims
to maximize their cumulative reward over a process of length
T . Regret minimization is at the heart of MAB, where re-
gret measures the difference between the cumulative reward
obtained by always selecting the best arm and the cumula-
tive reward achieved by a player’s policy. To this end, bal-
ancing exploration (gaining information) and exploitation
(maximizing current reward) is key to the player’s success.
Several classical algorithms have been developed for differ-
ent MAB settings with proven upper bounds on the regret.
Furthermore, to establish optimality of these algorithms, it
is essential to prove lower bounds of the same order (in
terms of the time horizon T ) for all algorithms in specific

Preprint. Under review.

problem instances. If such lower bounds exist, we refer
to them as tight. These worst-case scenario analyses deter-
mine the fundamental complexity of bandit problems, val-
idate whether the algorithms are optimal or not, and moti-
vate the development of optimal algorithms. Specifically, in
the instance-dependent case, KL-divergence plays a crucial
role in characterizing the hardness of distinguishing between
optimal and sub-optimal arms. The seminal work by (Lai,
Robbins et al. 1985) establishes an asymptotic regret lower
bound of order O(log T ) for consistent algorithms using
an elegant regret decomposition approach that incorporates
KL-divergence. Subsequent work relaxes the assumptions
of consistency and asymptotics (Lattimore and Szepesvári
2020) assuming 2 arms. For the mean-gap independent case,
(Lattimore and Szepesvári 2020) demonstrate a minimax re-

gret lower bound of order
√
T . Furthermore, (Shamir 2014)

establishes a general regret lower bound of order
√
T for

MAB variants where multiple arms can be pulled at each
time step. The key idea behind these results is to construct
problem instances where the optimal arm is very close to
the sub-optimal arms but not too close, making it challeng-
ing for the player to distinguish between them and resulting
in a risk of getting less rewards and significant regret. The
gap is precisely chosen and is the main technique.

Recently, the field of multi-agent Multi-armed Bandit (multi-
agent MAB) has gained significant attention, driven by the
application of cooperative learning processes in federated
learning to various real-world scenarios, including health-
care and autonomous driving, as well as the increasing
demand for large-scale distributed decision learning pro-
cesses in sensor networks and robotic systems. In multi-
agent MAB, multiple agents, also referred to as clients or
players, face multiple MABs. The objective of the clients is
to optimize the overall system performance, which is quan-
tified using regret. Regret measures the difference between
the cumulative reward obtained by pulling the optimal arm,
where optimality is defined based on the average rewards
across all clients, and the cumulative reward obtained by all
the clients. Similar to the categorization in the traditional
MAB framework, problem settings in multi-agent MAB are
classified as either stochastic or adversarial, depending on
the nature of reward distributions. In stochastic multi-agent
MAB, the rewards for each client are independently and
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identically distributed over time, while in adversarial multi-
agent MAB, the rewards are chosen by an adversary.

The multi-agent MAB framework presents additional chal-
lenges compared to the traditional MAB. Similar to MAB,
it deals with the exploration-exploitation trade-off as a ma-
jor challenge. However, in the multi-agent setting, each
client faces this challenge while potentially lacking com-
plete information about other clients. This limitation arises
from the fact that optimality is defined based on average re-
wards across clients, requiring each client to obtain infor-
mation from other clients, which, however, is constrained
by the distribution of clients within the system. To tackle
this issue, previous work has extensively studied settings
that incorporate a central server, also referred to as a con-
troller, as discussed in (Bistritz and Leshem 2018; Zhu
et al. 2021b; Huang et al. 2021; Mitra, Hassani, and Pap-
pas 2021; Réda, Vakili, and Kaufmann 2022; Yan et al.
2022). In this setup, the central server integrates and dis-
tributes information among the clients at each time step,
which has led to a regret upper bound of order O(log T )
in stochastic multi-agent MAB matching the regret bounds
in stochastic MAB. However, despite being mentioned in
(Martı́nez-Rubio, Kanade, and Rebeschini 2019) regarding
the instance-dependent lower bound of order logT , a formal
lower bound statement has yet to be thoroughly examined in
this centralized structure. This research gap partly motivates
the present study, where we aim to address this knowledge
gap and provide a comprehensive analysis of the regret lower
bound within the centralized multi-agent MAB framework.

The assumption of centralization may not be realistic in real-
world scenarios, where clients are often limited to pairwise
transmissions constrained by underlying graph structures. In
response to this, a fully decentralized framework charac-
terized by means of graph structures has been proposed in
several studies (Landgren, Srivastava, and Leonard 2016b,a,
2021; Zhu, Sandhu, and Liu 2020; Martı́nez-Rubio, Kanade,
and Rebeschini 2019; Agarwal, Aggarwal, and Azizzade-
nesheli 2022; Wang et al. 2021; Jiang and Cheng 2023; Zhu
et al. 2021a,b). This decentralized approach removes the cen-
tralization assumption, making it more general while intro-
ducing non-trivial challenges. To this end, certain assump-
tions on the graphs are incorporated in these studies. Ex-
amples include complete graphs (Wang et al. 2021), regular
graphs (Jiang and Cheng 2023), and connected graphs under
the doubly stochasticity assumption (Zhu et al. 2021a; Zhu,
Sandhu, and Liu 2020). In all cases, the regret upper bounds
that are of order O(log T ), are consistent with those in the
MAB setting. Furthermore, recent research has focused on
time-varying graphs, such as B-connected graphs under the
doubly stochasticity assumption (Zhu and Liu 2023) , as
well as random graphs, including the Erdős-Rényi model
and random connected graphs (Zhu and Liu 2023). Like-
wise, in these cases, the regret upper bounds maintain the
order O(log T ). However, it is important to note that the cor-
responding regret lower bounds have not yet been addressed
in the existing literature, which is one of the main focuses of
this study.

In a separate line of research, (Jia, Shi, and Shen 2021)
have introduced a regret upper bound in MAB of order√
T , which is independent of the sub-optimality gap ∆i

representing the difference between the mean value of the
optimal arm and the mean value of the sub-optimal arms.
Their setting is standard MAB. Unlike the above regret

bound of order O(log T ) = O
(

log T
∆i

)

that tends to grow

rapidly when ∆i approaches zero, this mean-gap indepen-
dent regret bound remains stable even when ∆i is very small
and thereby holding universally across different problem
settings. Building upon this, (Xu and Klabjan 2023a) an-
alyze the decentralized multi-agent MAB framework with
random graphs, and establish a regret upper bound of order

O(
√
T log T ), which aligns with (Jia, Shi, and Shen 2021)

up to a logarithmic factor. However, despite these advance-
ments in the regret upper bounds, the corresponding regret
lower bounds in the mean-gap independent sense have not
yet been explored. Addressing this research gap is one of
the primary objectives of this paper.

In addition to the classical stochastic settings, (Cesa-Bianchi
et al. 2016) investigate an adversarial multi-agent MAB

problem and provide a regret upper bound of order
√
T ,

demonstrating its consistency with the adversarial MAB
problem under the EXP3 algorithm. More recently, (Yi and
Vojnović 2023) have focused on the heterogeneous vari-
ant, where different adversaries are different across clients.
The presence of heterogeneous adversaries poses a signif-
icant challenge, resulting in a regret upper bound of or-

der O(T
2

3 ), which is larger than the regret bound for the

standard MAB problem of order
√
T . Furthermore, in the

adversarial setting, they establish a regret lower bound of

order
√
T , which, while informative, is smaller than their

proposed regret upper bound. They achieve this by leverag-
ing the results from the MAB setting presented in (Shamir
2014) and constructing problem instances with mini batches
of adversarial rewards. Nevertheless, it remains unexplored
whether this lower bound is optimal and whether it is pos-
sible to develop even larger lower bounds or smaller upper
bounds in order to claim optimality. This paper improves the
lower bound in this setting and highlights its fundamental
challenge by incorporating mini batches and constructing a
novel graph instance.

We introduce a novel contribution to the decentralized
multi-agent MAB problem by investigating the regret lower
bounds in various settings, accounting for different graph
structures and reward assumptions. In the context of stochas-
tic rewards and instance-dependent regret bounds, we pro-
vide the first formal analysis of the regret lower bound for
the centralized setting, demonstrating its tightness. We lever-
age the aforementioned classical idea in MAB and incorpo-
rate it into this multi-agent MAB setting. Additionally, we
conduct a comprehensive study on the regret lower bounds
in decentralized settings under various graph assumptions by
proposing instances that capture the problem complexities
of multi-agent systems on a brand new temporal graph. We
show that the regret bounds are of order Ω(logT ), aligning



with the existing work’s regret upper bounds and establish-
ing their optimality and tightness.

Apart from the instance-dependent regret lower bounds of
order Ω(logT ), we further extend our analysis to mean-gap
independent regret lower bounds, presenting a novel contri-
bution as well. Specifically, we establish mean-gap indepen-

dent regret bounds of order Ω(
√
T ), which not only vali-

date near optimality of the algorithm proposed in (Xu and
Klabjan 2023a) up to a logT factor but also coincide with
the existing literature on MAB. This study enhances the un-
derstanding of the decentralized problem settings and pro-
vides valuable insights for future research in terms of robust
methodologies in this context.

Furthermore, our research extends to adversarial settings,
where we establish regret lower bounds and demonstrate
their tightness across various graph assumptions, includ-
ing both centralized and decentralized scenarios. Firstly, we

show that the regret lower bound is of order Ω(
√
T ) for com-

plete graphs, which aligns with the results for traditional
MAB problems, highlighting their inherent similarities. Par-
ticularly noteworthy is our finding that the regret lower
bound for decentralized multi-agent MAB with connected

graphs is of order Ω(T
2

3 ). Notably, we construct a novel
graph instance in the connected graph family and adopt a
more complicated random shuffling mini batches, which in-
creases the complexity of the problem. This result effectively
bridges the gap between the regret upper and lower bounds
presented in (Yi and Vojnović 2023) and establishes that

achieving a regret upper bound of O(
√
T ) is infeasible in

this adversarial setting. Our work uncovers the inherent lim-
itations and challenges of addressing adversarial multi-agent
MAB problems even with good connectivity properties com-
pared to traditional MAB problems. Moreover, we explore
the regret lower bounds in disconnected graphs with a clique
connected component and demonstrate regret lower bounds
of order Ω(T ). These findings provide valuable insights into
the performance limitations of multi-agent MAB algorithms
in graph structures with limited connectivity.

Our main contributions are as follows. We are the first

• to formally establish the tight instance-dependent regret
lower bounds of order logT in stochastic multi-agent
MAB in both centralized and decentralized settings,

• to study the mean-gap independent regret lower bounds

of order
√
T in multi-agent MAB,

• to prove that for adversarial settings, the regret lower

bound is of order T
2

3 and T for connected and discon-
nected graphs, the first of which bridges the existing
gap; a coherent analysis also extends to complete graphs,

where the result is of order
√
T .

The structure of the paper is as follows. First, we formally
introduce the problem settings along with the notations that
are utilized throughout the paper. In the subsequent section,
we provide the statements on the regret lower bounds in a

wide variety of settings. Finally, we summarize the paper
and point out future possibilities based on the findings.

Problem Formulation

Throughout the paper, we study a decentralized system with
M ≥ 3 clients, and T represents the time horizon. More
specifically, the clients are labeled as nodes 1, 2, . . . ,M on
a network, where the underlying graph at each time step
1 ≤ t ≤ T is represented by an undirected graph Gt. It is
worth emphasizing that the centralization structure is equiva-
lent to communications on a complete graph since every pair
of clients communicates through the central server.

Formally, Gt = (V,Et) is described by a unique vertex set
V = 1, 2, . . . ,M and an edge set Et that contains pairwise
nodes and conveys the neighborhood information of Gt. We
use Nm(t) to denote the neighbor set of client m, which
represents all the neighbors of client m in Gt. It is worth
noting that the graph Gt can be equivalently described by
its adjacency matrix, denoted as (Xt

i,j)1≤i,j≤M , where the

element Xt
i,j is equal to 1 if there is an edge between clients

i and j, and 0 otherwise. For simplicity, we specify Xi,i =
1 for any client 1 ≤ i ≤ M . We use GM to denote the
set of all connected graphs with M nodes. If G = Gt, we
call it stationary and otherwise temporal. In the Erdős-Rényi
model we use superscript c where c is the edge probability,
e.g. N c

m(t) is defined based on probability c. In the random
connected graph model we denote by c the probability of an
edge being in such a graph.

Subsequently, we introduce the bandit problems associated
with the clients. Consistent with the existing literature, an en-
vironment generates graphs Gt and rewards rmi (t). For each
client 1 ≤ m ≤ M , there are K ≥ 2 arms to be pulled.
At each time step t, the reward of arm 1 ≤ i ≤ K is de-
noted as rmi (t), which is independently and identically dis-
tributed across time with a mean value of µm

i . The clients
draw rewards independently of one another. The interaction
between the client and the environment works as follows;
Client m pulls an arm atm and obtains the corresponding re-
ward rmat

m
(t) from the environment. Additionally, clients can

communicate with their neighbors in Gt as provided by the
environment. This means that two clients can exchange in-
formation if and only if they are connected by an edge.

Following the common definition of the global reward,
we define the global reward of arm i as ri(t) =
1
M

∑M
m=1 r

m
i (t), and the corresponding expected global re-

ward as µi = 1
M

∑M

m=1 µ
m
i . An arm is called globally op-

timal if i∗ = argmaxi µi, and globally sub-optimal oth-
erwise. The parameter ∆i = µi∗ − µi represents the sub-
optimality gap of arm i.

We note that maxi T · µi = maxiE[
∑T

t=1 ri(t)] ≤
E[maxi

∑T
t=1 ri(t)], by the Jensen’s inequality. If we es-

tablish a lower bound on the regret defined with respect to
maxi T ·µi (called also pseudo regret), we establish that the

expected regret with respect to E[maxi
∑T

t=1 ri(t)] exhibits
the same lower bound. As a result, we focus on demonstrat-



ing lower bounds on the pseudo regret throughout the paper,
which is called regret for convenience.

This allows us to precisely quantify the regret associated

with the action sequence (policy) π = {atm}1≤t≤T
1≤m≤M . In an

ideal scenario where complete knowledge of {µi}i is avail-
able, clients would prefer to pull the arm i∗. However, due
to partially observed rewards from the bandits (dimension
i) and limited access to information from other clients (di-
mension m), the regret of a policy π in the bandit setting

is defined as Rπ
T = Tµi∗ − 1

M

∑T

t=1

∑M

m=1 µ
m
at
m

. This re-

gret metric quantifies the difference between the cumulative
expected reward obtained by following the globally optimal
arm and the actual reward accumulated by executing the ac-
tion sequence. We consider two types of policies. Denote

σt,m
F = σ({{Isj }j∈Nm(s)}s≤t) where Isj represents the in-

formation of all arms contained at client j at time step s and,

denoteσt,m
B = σ({{Isj (ajs)}j∈Nm(s)}s≤t) where Isj (a

j
s) rep-

resents the information of arm ajs contained at client j at
time step s. In other words, σt

F captures the history of all

arms up to time t, whereas σt,m
B only contains the infor-

mation of client m’s time dependent actions up to time t.
Henceforth, we have σt,m

B ⊂ σt,m
F . With these notations at

hand, we further define policy set ΠF and ΠB as ΠF =
{ft} where the domain of ft is on σt

F = {σt,m
F }m,ΠB =

{gt} where the domain of gt is on σt
B = {σt,m

B }m. To this

end we define RB
T = minπ∈ΠB

Rπ
T . Likewise, assuming the

observations of all arms are visible to the clients, which is re-
ferred to as the full-information setting, we denote the regret
as RF

T = minπ∈ΠF
Rπ

T .

The primary objective of this paper is to develop theoretical
lower bounds on the regret in worst-case scenarios under dif-
ferent assumptions on the underlying graphs, where clients
operating in decentralized settings have certain regrets re-
gardless of the policies deployed.

Lower Bound Analyses

Before analyzing the regret lower bounds in bandit settings,
we consider its relationship with the regret in the full in-
formation setting. The full information setting provides a
less black-box approach for characterizing the regret of al-
gorithms.

Theorem 1. For decentralized multi-agent problems on any
graph Gt, for all problem instances we have RF

T ≤ RB
T .

Proof. Consider any policy π ∈ ΠB . Since it only requires
the information of clients’ actions σt

B , and σt
B ⊂ σt

F , we
obtain that π ∈ ΠF . Subsequently, we arrive at ΠB ⊂ ΠF by
the arbitrary choice of π, which yields that minπ∈ΠF

Rπ
T ≤

minπ∈ΠB
Rπ

T , or equivalently RF
T ≤ RB

T .

Subsequently, we establish the following regret lower
bounds in the instance-dependent and mean-gap indepen-
dent sense for the full information setting.

Theorem 2. For decentralized multi-agent online prob-
lems with full information, if the graph G is a complete
graph, then there exists a problem instance such that the
regret of any online distributed learning algorithms is at

least Ω(
√
T ) and Ω(logT ) in mean-gap independent and

instance-dependent settings, respectively.

Proof sketch. The complete proof is presented in Appendix;
we summarize the main idea as follows. We note that the
complete graph case is approximately equivalent to a single-
agent bandit problem with full information. For the single-
agent case, there exists literature establishing the corre-
sponding instance-dependent regret bound of order logT
and mean-gap independent regret bound of order Ω(

√
T ), as

introduced in (Goldenshluger and Zeevi 2013) and (Shamir
2014), respectively.

Instance-dependent

Next, we demonstrate the instance-dependent lower bounds
in stochastic bandits for different graph structures, build-
ing upon the previously established lower bound for the
full information setting. These graph structures include time-
invariant complete, connected, and regular graphs, as well as
time-varying complete, connected, regular graphs, and time-
varying Erdős-Rényi (E-R) model and random connected
graphs, which encompass the graphs studied in prior works.
The formal statement is as follows.

Theorem 3. For decentralized multi-agent MAB problems
with any numbers of clients and stochastic rewards, if Gt

are complete, or connected or regular, and either stationary
or temporal, or if Gt follow the E-R model or are random
connected graph, then the instance-dependent expected re-
gret RB

T of any algorithm is at least Ω(logT ).

Proof. The instance-dependent regret bound presents non-
trivial challenges to the analysis. We start with complete
graphs. We specify K = 2 and assume µ1 > µ2 without loss
of generality. Consider the centralized problem which has
times when the clients pull the same arm (agreement) and
times when the clients pull distinct arms (disagreement). We
denote the number of time steps of agreement and disagree-
ment as Ta and Td, respectively. We observe that Ta+Td =
T . For Td, there exist clients pulling the worse arm, which
implies that for any policy π ∈ ΠB

Rπ
T =

1

M

∑

m

∑

t∈Td

(µ1 − µam
t
) +

1

M

∑

m

∑

t∈Ta

(µ1 − µam
t
)

=
∑

t∈Td

∆2 +
1

M

∑

m

∑

t∈Ta

(µ1 − µam
t
)

= Td∆2 +
1

M

∑

m

∑

t∈Ta

(µ1 − µam
t
). (1)

Note that when Td = Ω(logT ), we immediately derive that
E[RB

T ] ≥ Ω(log T ), which concludes the proof.

From now on, we assume Td = o(log T ), which implies

that Ta = T − o(log T ) and Ta

T
→ 1 as T goes to ∞. We



denote the value t0 = logT and divide the time horizon into
t0∪
j=0

[2j, 2j+1 − 1]. It is clear that 1) the number of intervals

is logT and 2) the length of the jth interval is 2j−1. Let
td = max{t|t ∈ Td} + 1. Since Td = o(log T ), we have

|[td, T ]| ≥ 2
1

2
log T for all large enough T .

Meanwhile, we observe that for Ta, it is equivalent to a
single-agent multi-objective bandit problem (Xu and Klab-
jan 2023b) since the global reward of a single arm i is

given as a reward vector (rm,t
i )Mm=1 and is revealed to all

the clients at each time step.

Note that 1
M

∑

m

∑

t∈Ta
(µ1−µm

am
t
) = 1

M

∑

m

∑

t∈Ta
(µ1−

µm
at
) =

∑

t∈Ta
(µ1 − µat

) where the first equality is by the
definition of Ta and the second equality uses the definition
of µ1 and µat

. We denote T d
a = Ta ∩ [td, T ] = [td, T ].

At the same time, the Pareto pseudo regret reads RTd
a ,M =

Dist(
∑

t∈Td
a
(µm

at
)m, O) where Dist(·) is the distance mea-

sure between a reward vector and the Pareto optimal set O
as introduced in (Xu and Klabjan 2023b), and satisfies that
RTd

a ,M ≥ Ω(logT d
a ) for any policy {at} based on Theorem

6 in (Xu and Klabjan 2023b).

By specifying the rewards homogeneous, i.e. µ1
at

= µ2
at

=

. . . = µM
at

and following a similar analysis as on Theo-
rem 6 in (Xu and Klabjan 2023b), we obtain RTd

a ,M =

Dist(
∑

t∈Td
a
(µm

at
)m, O) =

∑

t∈Td
a
(µ1 − µat

) which yields

∑

t∈Ta

(µ1 − µat
) ≥

∑

t∈Td
a

(µ1 − µat
)

≥ Ω(log T d
a ) = Ω(log(2

1

2
log T )) = Ω(logT ). (2)

To put everything together, we have that for any policy π ∈
ΠB Rπ

T ≥ Td∆2 +
1
M

∑

m

∑

t∈Ta
(µ1 −µam

t
)) ≥ Ω(logT )

where the second inequality holds by (2).

Subsequently, we obtain minπ∈ΠB
Rπ

T ≥ Td∆2 +
1
M

∑

m

∑

t∈Ta
(µ1 − µam

t
)) ≥ Ω(logT ), which concludes

the analysis of complete graphs.

The remaining cases follow from the monotonicity of the
regret in the graph complexity as follows. We first con-
sider the full-information setting. For any 0 < c ≤ 1,
we denote σt

c = σ({{Isj }j∈N c
m(s)}s≤t). We observe that

σt
1 = σ({Is1 , . . . , IsM}s≤t). We have σt

c ⊂ σt
1. We define

policy set Πc as {ft} where the domain of ft is on σt−1
c .

For any policy π ∈ Πc, i.e. π = {ht}Tt=1, we have that
it only leverages the neighborhood information σt−1

c to de-
termine a decision rule at each time step. Since σt−1

c ⊂
σt−1
1 , σt−1

1 also has the neighborhood information that ht

requires. This leads to π ∈ Π1, and subsequently yields
Πc ⊂ Π1. We hence obtain that in the full-information set-
ting minπ∈Π1

Rπ
T ≤ minπ∈Πc

Rπ
T .

By the above discussion on c and the statement for com-
plete graphs, or equivalently, with respect to Π1, we obtain

Ω(logT ) ≤ minπ∈Π1
Rπ

T , in the instance-dependent sense
and subsequently Ω(log T ) ≤ minπ∈Πc

Rπ
T .

By Theorem 1, we have RB
T ≥ Ω(logT ). This completes

the E-R case. All remaining cases follow the same logic.

Remark. While (Martı́nez-Rubio, Kanade, and Rebeschini
2019) discuss the instance-dependent regret lower bound of
order Ω(logT ) in the centralized setting, we provide the first
formal statement for various graphs. The result coincides
with the lower bound in the single-agent MAB setting. Fur-
thermore, the result is consistent with the established upper
bounds in the multi-agent MAB settings, thereby demonstrat-
ing its tightness.

Additionally, we also consider scenarios with disconnected
graphs, which can result in linear regret due to the pres-
ence of isolated clients when the rewards are heterogeneous.
The first result applies to consistent algorithms, following
the classical assumption made in some existing literature.
The consistency assumption states that the regret of the
considered algorithms is of order o(T a) for any constant
0 < a ≤ 1. The second result applies to any algorithms, with
the constraint of limiting the number of arms to 2. These re-
sults are summarized in the following statements.

Theorem 4. For decentralized multi-agent MAB problems,
if graph G is disconnected with a clique connected compo-
nent, then there exists a problem instance such that the re-
gret of any online distributed algorithms that are individu-
ally consistent at local clients is at least Ω(T ).

Proof sketch. The proof is deferred to Appendix; the main
logic is as follows when the clique is an isolated vertex.
We construct a problem instance as follows. For clients
1, . . . ,M−1, their reward distributions are the same, reading
as (∆, 0, . . . , 0) ∈ RK , while for client M , the reward distri-
bution reads as (0, 2∆, 0, . . . , . . . , 0) ∈ RK for any ∆ > 0.
We assume node M is isolated. Using any consistent algo-
rithms at client M leads to E[nM,2(T )] = Ω(T ) and subse-
quently results in a linear regret. Here nM,2 is the number of
pulls of arm 2 at client M .

As mentioned earlier, we remove the consistency assump-
tion by assuming the number of clients is 2, which essen-
tially deals with the trade-off between the problem setting
and the considered algorithms.

Theorem 5. For decentralized multi-agent MAB problems,
if graph G is disconnected with a clique connected compo-
nent, then there exists a problem instance with K = 2 such
that the regret of any online distributed algorithms is at least
Ω(T ).

Proof sketch. The proof is given in Appendix; the proof
logic is as follows when the clique component is an isolated
vertex. We again let client M be an isolated node. For two
arms labeled as arm 1 and 2, we construct the instance at
clients as follows. Let random variable x follow a uniform



distribution in {0, 1} and be fixed once determined, and for

any time step t, the reward rjk(t) is generated as r1k(t) =
{

x arm 1
1
2 arm 2

and for j > 1 we have rjk(t) =

{

1
2 arm 1
1
2 arm 2.

The randomness of x changes the optimality of arms, and
makes client M even harder to identify the global optimal
arm and impossible to achieve sublinear regret even though
inconsistent algorithms are deployed.

Remark. To the best of our knowledge, this is the first re-
sult on the regret lower bound for settings with disconnected
graphs. This linear regret essentially highlights the inherent
complexity of multi-agent MAB problems compared to their
single-agent counterparts.

Mean-gap independent

Apart from the instance-dependent regret lower bounds,
we also investigate the mean-gap independent regret lower
bound that is applicable to both stochastic and adversarial

settings. The regret order in this case is
√
T , which differs

from the logT bound. The following theorem summarizes
these results, considering all the previously mentioned graph
structures.

Theorem 6. For decentralized multi-agent MAB problems
with any numbers of clients and stochastic rewards, if Gt

are complete, connected or regular, and stationary or tem-
poral, or the E-R model or random connected graphs, then
the mean-gap independent regret of any algorithm is at least

Ω(
√
T ).

Proof sketch. The formal proof is in Appendix; the main
logic is as follows. The proof is similar to that of Theorem 6,
except that we consider mean-gap independent bounds using
Theorem 4 in (Shamir 2014). We first analyze settings with

complete graphs and establish RB
T ≥

√

KT
1+M

= Ω(
√
T ).

Likewise, the monotonicty in graphs of the regret bounds al-
low us to determine the same result for other graphs, which
concludes the proof.

Remark. Similarly, this result aligns with the lower bound
established in the single-agent MAB setting. Furthermore,

this lower bound of order
√
T corresponds to the mean-gap

upper bounds presented in (Xu and Klabjan 2023a) and
(Jia, Shi, and Shen 2021) for multi-agent and single-agent
MAB problems, respectively. This consistency further shows
the tightness of the lower bound we have derived.

Adversarial

Since the mean-gap independent regret bounds hold for the
stochastic problem setting, they also hold for the adversar-
ial problem setting. This is due to the fact that the set of
stochastic settings is essentially a subset of the set of adver-
sarial settings. Therefore, our result remains consistent with
the result in (Yi and Vojnović 2023).

Theorem 7. For decentralized multi-agent MAB problems,
if the graph Gt is a complete graph, then there exists a prob-
lem instance such that the regret of any online distributed

learning algorithms is at least Ω(
√
T ).

Furthermore, we construct special connected graphs, in ad-
versarial settings and demonstrate that they lead to a regret

lower bound of order Ω(T
2

3 ). This bound is larger than the

commonly observed O(T
1

2 ) in single-agent adversarial set-
tings and decentralized multi-agent adversarial settings with
complete graphs. We summarize these results in the follow-
ing two theorems, one for a large number of clients and the
other one for a small number of clients.

Theorem 8. For decentralized multi-agent MAB problems,

if the number of clients M ≥ Ω(T
1

3 ) and the graph Gt is a

connected graph with two expanders of size M
4 having dis-

tance d ≥ ηM
8 given constant 4 > η > 0, then there exists

a problem instance such that the regret of any online dis-

tributed learning algorithm is at least Ω(T
2

3 ).

Proof sketch. The proof is deferred to Appendix; the idea is
summarized as follows. We consider clients are distributed
on a special connected graph, e.g. a path graph and focus
on two subsets of node, denoted as I0 and I1, respectively,
that satisfy |I0| = |I1| = M

4 , and the shortest path dp from

I0 to I1 meets the condition dp ≥ ηM
8 . Then the choice of

M gives dp ≥ Ω(T
1

3 ) and we import the result in (Yi and

Vojnović 2023) and obtain RB
T ≥ Ω(

√

dp · T ) = Ω(T
2

3 ) for
full-information settings.

Remark. Note that the existence of such graphs is guaran-
teed by the property of expanders of size M

4 . An expander

of size M
4 has a diameter of order logM (Proposition 3.1.5

in (Kowalski 2019)). Indeed, for η = 4, a path is such an
expander.

For small values of M , achieving the same regret lower
bound requires additional effort since the setting allows
for more communication between clients. In this case, we
present the following result that establishes the same lower
bound on regret by importing techniques from information
theory.

Theorem 9. For decentralized multi-agent MAB problems,

if the number of clients M = T
2

15 and the graph Gt is a
connected graph with two expanders of size M

4 having dis-

tance d ≥ ηM
8 given constant 4 > η > 8 · 8− 2

15 , then there
exists a problem instance such that the regret of any online

distributed learning algorithms is at least Ω(T
2

3 ).

Proof. Let M mod 4 = 0 and T > 8. Denote expanders of
size M

4 as two disjoint subsets of nodes I0 = {1, 2, . . . , M
4 }

and I1 = { 3
4M, 3

4M + 1, . . . ,M}. Note that |I0| = |I1| =
M
4 . By the definition of Gt, the shortest path distance be-

tween I0 and I1 is d ≥ ηM
8 . We set ǫ =

√

4
η
M2

2 T− 1

3 . It



follows 8ǫ2d ≤ 1.

Let B1 be Bernoulli with probability 1
2 + ǫ and B2 Bernoulli

with probability 1
2 . Consider the bandit problem as follows.

Let X be a random variable following a uniform distribution
on {0, 1, . . . , M4 }. For client X ≥ 1, arm 1 follows B1 and
arm 2 follows B2. For i ∈ I0\{X}, let the arms follow B2.
All clients not in I0 have all rewards 0.

Additionally, we re-sample random variableX every d steps,
i.e. we re-specify the client X if X ≥ 1. If X = 0, all
clients have reward based on B2. We denote the number
of such re-sampling steps as D, D = ⌊T

d
⌋, which leads

to a sequence {X1, X2, . . . , XD}. The following holds for
i ∈ I0. Subsequently, let us define distribution Qi

j(arm) =

P (arm|Xj = i) and Q−1
j (arm) = P (arm|Xj = 0). Note

that Q−1
j represents that all clients in I0 share the same re-

ward distribution. Let Qi
j,t(arm) = P (arm|σt, Xj = i)

and Q−1
j,t (arm) = P (arm|σt, Xj = 0). It is easy to verify

that

DKL(Q
−1
j,t , Q

i
j,t) =

1

2
log

1
2

1
2 − ǫ

+
1

2
log

1
2

1
2 + ǫ

=
1

2
log(1 +

4ǫ2

1− 4ǫ2
) ≤ 1

2
· 4ǫ2

1− 4ǫ2
≤ 4ǫ2,

where the first inequality uses the fact that log(1 + x) ≤
x and the second inequality holds by the choice of ǫ =
M2

2 T− 1

3 ≤ 1
4 since T > 8.

Therefore, by the chain rule for relative entropy, we ob-

tain DKL(Q
−1
j , Qi

j) =
∑(j+1)d

t=jd DKL(Q
−1
j,t , Q

i
j,t) ≤

∑(j+1)d
t=jd 4ǫ2 ≤ 4ǫ2d.

By the Pinsker’s inequality we have that DTV (Q
−1
j , Qi

j) ≤
√

DKL(Q−1

j
,Qi

j
)

2 ≤ ǫ
√
2d. (3)

The expected reward of arm 1 is 1
8 + 1

M

|I0|
|I0|+1ǫ from

µ1 =
1

M

M
∑

m=1

µm
1 =

1

M

∑

m∈I0

µm
1 +

1

M

∑

m 6∈I0

µm
1

=
1

M

∑

m∈I0

[

E[µm
1 |X1 ∈ I0]P (X1 ∈ I0)+

∑

m∈I0

E[µm
1 |X1 6∈ I0]P (X1 6∈ I0)

]

+
1

M

∑

m 6∈I0

0

=
1

M
(

|I0|
|I0|+ 1

(
1

2
+ ǫ+

1

2
(|I0| − 1))+

1

|I0|+ 1
(
1

2
+

1

2
(|I0| − 1))

=
1

8
+

1

M

|I0|
|I0|+ 1

ǫ

and of arm 2 is 1
8 from

µ2 =
1

M

M
∑

m=1

µm
2

=
1

M

∑

m∈I0

µm
2 +

1

M

∑

m 6∈I0

µm
2

=
1

M

∑

m∈I0

1

2
+

1

M

∑

m 6∈I0

0 =
1

8
.

As a result ∆1 = ǫ
M

|I0|
|I0|+1 ≥ ǫ

2M since |I0| ≥ 1. Let us

denote by nm,1(T, j) the number of pulls of arm 1 by client

m during the jth epoch which is the optimal arm. Therefore,
we obtain

E[RB
T ] = E[E[RB

T |X1, . . . , XD]]

= E[E[
1

M

M
∑

m=1

(
ǫ

2M
(T − nm,1(T )))|X1, . . . , XD]]

= E[E[
1

M

M
∑

m=1

(
ǫ

2M
(

D
∑

j=1

d−
D
∑

j=1

nm,1(T, j)))|X1, . . . , XD]]

= E[
1

M

M
∑

m=1

D
∑

j=1

E[(
ǫ

2M
(d− nm,1(T, j)))|X1, . . . , XD]]

=
1

M

M
∑

m=1

D
∑

j=1

E[E[(
ǫ

2M
(d− nm,1(T, j)))|Xj ]]

=
1

M

M
∑

m=1

D
∑

j=1

∑

i∈I0∪{0}

E[( ǫ
2M (d− nm,1(T, j)))|Xj = i]]

|I0|+ 1

≥ 1

2M2
(

1

|I0|+ 1

D
∑

j=1

∑

i∈I0∪{0}

E[ǫ · (d− n1,1(T, j))|Xj = i])

=
1

2M2
(ǫ · T − ǫ

|I0|+ 1

D
∑

j=1

∑

i∈I0∪{0}

EQi
j
[(n1,1(T, j))])

(4)

where the the first and fifth equality use the law of total ex-

pectation, the third equality is by the fact that T =
∑D

j=1 d

and
∑D

j=1 nm,1(T, j) = nm,1(T ), and the sixth equality

uses the distribution of Xj defined by P (Xj = i) = 1
|I0|+1

for i ∈ I0 ∪ {0}.

Note that EQi
j
[(n1,1(T, j))] − EQ

−1

j
[(n1,1(T, j))] =

∑(j+1)d
t=jd (Qi

j(a
1
t = 1)−Q−1

j (a1t = 1)) ≤ d·DTV (Q
−1
j , Qi

j)
where the last inequality is by the definition of the total vari-
ation DTV .



This immediately gives us that

∑

i∈I0∪{0}

D
∑

j=1

EQi
j
[(n1,1(T, j))]

≤
∑

i∈I0∪{0}

D
∑

j=1

(j+1)d
∑

t=jd

(Q−1
j (a1t = 1) + d ·DTV (Q

i
j , Q

−1
j ))

≤ T + d
∑

i∈I0∪{0}

D
∑

j=1

DTV (Q
i
j , Q

−1
j ))

≤ T + d
∑

i∈I0∪{0}

D
∑

j=1

(ǫ
√
2d)

= T + dDǫ
√
2d(|I0|+ 1) = T + T · |I0|+ 1

4

where the second inequality uses
∑

i Q
−1
j (a1t = 1) = 1

and dD = T , and the third inequality uses (3), and the
last equality holds by the choices of d and ǫ that satisfy

ǫ
√
2d(|I0|+ 1) ≤ |I0|+1

4 . Here we also use the lower bound
on η.

Consequently, we arrive at

E[RB
T ] ≥

1

2M2
(ǫ · T − ǫ

|I0|+ 1
(T + T · |I0|+ 1

4
))

≥ 1

2M2

1

4
ǫ · T = Ω(T

2

3 ) (5)

where the last inequality uses |I0| = M
4 ≥ 2 and the equality

holds by the choice of ǫ and M .

Remark. It is worth noting that this lower bound is consis-
tent with the regret upper bound in (Yi and Vojnović 2023),

bridging the gap between the regret upper bound O(T
2

3 )

and the lower bound Ω(
√
T ) in (Yi and Vojnović 2023).

Surprisingly, it also coincides with the regret lower bound
for online learning with feedback graphs in (Alon et al.
2015), where the feedback received by the client is limited
to a graph structure. This connection highlights the relation-
ship between the decentralized multi-agent MAB system and
MAB with side information on graphs. Lastly, we observe

that this bound is larger than
√
T in the single-agent MAB,

manifesting the fundamental difference between multi-agent
and single-agent MAB in the presence of connected graphs,
in addition to the settings with disconnected graphs.

Conclusion
In this paper, we conduct a comprehensive study on the
regret lower bounds in a decentralized multi-agent MAB
framework across various settings, which provides an un-
derstanding of the fundamental challenges posed by dif-
ferent problem settings and insights into the development
of optimal algorithms. Specifically, we establish instance-
dependent and mean-gap independent lower bounds for

stochastic settings, which are of order logT and
√
T , re-

spectively, for all existing graphs. These results are consis-
tent with the existing upper and lower bounds, showing their

tightness and consistency, respectively. Additionally, we in-
troduce a novel problem instance in adversarial settings that

leads to a regret lower bound of order Ω(T
2

3 ). This finding
bridges the gap between the existing lower and upper bounds
and highlights the distinction between the multi-agent and
single-agent counterparts. Furthermore, we uncover worst-
case scenarios in multi-agent MAB settings by demonstrat-
ing a linear regret when the graphs are disconnected, which
adds to the difference between multi-agent and single-agent
MAB. As a next step, we suggest exploring novel algorithms
with smaller coefficients that are close to the lower bounds
established herein. As a concluding remark, how to show
high probability lower bounds remain an important yet un-
explored area of research.
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Société mathématique de France Paris.

Lai, T. L.; Robbins, H.; et al. 1985. Asymptotically efficient
adaptive allocation rules. Advances in Applied Mathematics,
6(1): 4–22.

Landgren, P.; Srivastava, V.; and Leonard, N. E. 2016a. Dis-
tributed cooperative decision-making in multiarmed bandits:
Frequentist and Bayesian algorithms. In 2016 IEEE 55th
Conference on Decision and Control, 167–172. IEEE.

Landgren, P.; Srivastava, V.; and Leonard, N. E. 2016b. On
distributed cooperative decision-making in multiarmed ban-
dits. In 2016 European Control Conference, 243–248. IEEE.

Landgren, P.; Srivastava, V.; and Leonard, N. E. 2021. Dis-
tributed cooperative decision making in multi-agent multi-
armed bandits. Automatica, 125: 109445.
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Réda, C.; Vakili, S.; and Kaufmann, E. 2022. Near-optimal
collaborative learning in bandits. Advances in Neural Infor-
mation Processing Systems, 35: 14183–14195.

Shamir, O. 2014. Fundamental limits of online and dis-
tributed algorithms for statistical learning and estimation.
Advances in Neural Information Processing Systems, 27.

Wang, Z.; Zhang, C.; Singh, M. K.; Riek, L.; and Chaudhuri,
K. 2021. Multitask bandit learning through heterogeneous
feedback aggregation. In International Conference on Artifi-
cial Intelligence and Statistics, 1531–1539. PMLR.

Xu, M.; and Klabjan, D. 2023a. Decentralized randomly dis-
tributed multi-agent multi-armed bandit with heterogeneous
rewards. arXiv preprint arXiv:2306.05579.

Xu, M.; and Klabjan, D. 2023b. Pareto Regret Analyses in
Multi-objective Multi-armed Bandit. In International Con-
ference on Machine Learning, 38499–38517. PMLR.

Yan, Z.; Xiao, Q.; Chen, T.; and Tajer, A. 2022. Federated
multi-armed bandit via uncoordinated exploration. In IEEE
International Conference on Acoustics, Speech and Signal
Processing, 5248–5252. IEEE.
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Proof of Results in Section 4

Proof of Theorem 2

Proof. On a complete graph, each client can observe the re-
wards of all arms at M clients, where the number of obser-
vations is thereby upper bounded by KM . Henceforth, we
consider Theorem 4 in (Shamir 2014) to obtain

RF
T ≥

√

KT

1 +KM
= Ω(

√
T ).

This completes the first part of the statement.

For the instance-dependent regret lower bounds, we assume
that the number of arms is 2 and the rewards of arms satisfies
the assumptions in (Goldenshluger and Zeevi 2013). Then
based on the result established by specifying a contextual
linear bandit with α = 1 as in (Goldenshluger and Zeevi
2013), which reads as Theorem 2, we obtain

RF
T ≥ Ω(logT ).

We add that the lower bound result for the bandit setting
holds for the full-information setting by noting the analysis
essentially uses the observations that are given by the full
information setting.

This concludes the instance-dependent lower bound in the
full information setting and thereby completes the proof.

Proof of Theorem 4

Proof. Consider a disconnected graph G with a clique con-
nected component CG including clients c1, . . . , cQ without
loss of generality. Since G is disconnected, for any other
node m 6∈ V (CG), there is no path between m and any node
in CG.

Let ∆ > 0. For client m 6∈ CG, the reward distributions
read as ( M−1

M−Q
∆, 0, . . . , 0), which indicates that the optimal

arm is arm 1. For client m ∈ CG, however, the reward dis-
tribution reads as (0, 2

Q
∆, 0, . . . , . . . , 0), implying that arm

2 is the optimal arm. It is straight-forward that the global

mean reward value of arm 1 is
(M−1)

M
∆ that is larger than

that of arm 2 which is 2∆
M

. The subsequent sub-optimality

gap is ∆2 = M−3
M

∆. Any no-regret (consistent as proposed
in (Lattimore and Szepesvári 2020)) algorithms π at client
j ∈ CG, where the regret with respect to the available infor-
mation is defined on the rewards of client j ∈ CG, leads to
E[nj,2(T )] = O(T ). However, in this situation, the global
regret satisfies

E[Rπ
T ] =

1

M

∑

m

T
∑

t=1

(E[µ1 − µam
t
])

≥ 1

M

T
∑

t=1

(E[µ1 − µ
a
j
t
])

≥ 1

M
E[nj,2(T )] ·∆1

=
1

M
· M − 3

M
∆ · Ω(T ) = Ω(T )

where the first inequality is by only considering client j and
the second inequality uses the fact that arm 2 is not a global
optimal arm.

This completes the proof of the linear regret in the case when
clients perform local consistent learning on disconnected
graphs.



Proof of Theorem 5

Proof. Again, we consider a disconnected graph G with a
clique CG including clients c1, . . . , cQ without loss of gen-
erality.

We assume there are two arms labeled as arm 1 and 2
and consider the instance at clients as follows by referenc-
ing (Alon et al. 2015). Let random variable X follow a uni-
form distribution in {0, 1} and be fixed once determined,

and for any time step t, the reward rjk(t) is generated as for

any j 6∈ CG, rjk(t) =

{

X arm 1
1
2 arm 2

and for any j ∈ CG,

we have rjk(t) =

{

1
2 arm 1
1
2 arm 2

where the random variable

X is independent of everything at client j ∈ CG as client
j ∈ CG only has the information of their own arms. We
have ∆2 = 1

2(M−Q) , no matter what value X takes since it

only changes the choice of optimal arms. Specifically, when
X = 1, the global optimal arm is arm 1 and the suboptimal-
ity gap is ∆2 = µ1−µ2 = (1− 1

2 )/(M−Q). When X = 0,
the global optimal arm is arm 2 and the suboptimality gap is
∆2 = µ2 − µ0 = (12 − 0)/(M −Q), the other way around.

Subsequently, we consider the regret at client j ∈ CG to
obtain

E[Rπ
T ] =

1

M

∑

m

T
∑

t=1

(E[µ∗ − µam
t
])

≥ 1

M

T
∑

t=1

(E[µ∗ − µaM
t
])

=
1

M
(
1

2
E[∆nj,1(T )|X = 0] +

1

2
E[∆(T − nj,1(T ))|X = 1])

=
1

M
(
1

2
E[∆nj,1(T )] +

1

2
E[∆(T − nj,1(T ))])

=
∆

4M(M −Q)
T = Ω(T )

where the first inequality uses the non-negativity of value
µ∗ − µam

t
and the third equality leverages the independence

between X and client j.

Proof of Theorem 6

Proof. We show the mean-gap free regret lower bound start-
ing with complete graphs. Note that a complete graph is
equivalent to a centralized problem with M agents. This im-
plies that each client can observe the reward of multiple arms
by communicating with M−1 neighbors, where the number
of observations is thereby upper bounded by M . Henceforth,
we consider Theorem 4 in (Shamir 2014) and obtain

RB
T ≥

√

KT

1 +M
= Ω(

√
T ).

This completes the proof of the complete graphs.

Regarding the monotonicity of the regret in the graph com-
plexity, the proof follows the proof of Theorem 3.

Proof of Theorem 8

Proof. Note that the graph structure determines the com-
munication efficiency of the clients. To consider the lower
bound, we leverage sparse graphs in the connected graph
family to perform the worst-case scenario analysis.

Specifically, we consider the designed graph consisting of
clients 1, . . . ,M in this order. It takes exactly O(M) time
steps for client 1 to obtain the information of client M ,
which results in a deterministic delay.

If I0 = {1, . . . , M
4 } and I1 = { 3M

4 , . . . ,M}, then the short-
est path dp from I0 to I1 meets the condition

dp ≥ Ω(
M + 1

3
).

By the choice of M such that M > Ω(T
1

3 ), we obtain

dp ≥ Ω(T
1

3 ). (6)

We star with a full-information setting. Following a similar
argument and constructing the same instance as in Lemma
A.4 in (Yi and Vojnović 2023), we arrive that in the full-
information setting

RT ≥ Ω(
√

dp · T ).

Subsequently, we obtain that

RT ≥ Ω(
√

dp · T )
= Ω(

√
T ·

√

dp)

≥ Ω(
√
T · T 1

6 ) = Ω(T
2

3 )

where the last inequality is by (6). Equivalently, we write it
as

RF
T ≥ Ω(T

2

3 ). (7)

Meanwhile, by Lemma 1, we have that the regret lower
bound in the bandit setting is larger than the regret in the
full information setting and thus by (7) we obtain

RB
T ≥ Ω(T

2

3 ).

This completes the proof of Theorem 8.


